Algorithms:
Complexity of
Algorithms

Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computa-
tion (sequential or parallel). We usually assume se-
quential.

Worst-Case Complexity

The worst case complexity of an algorithm is the function
defined by the maximum number of steps taken on any
instance of size n.

Number
of Steps Worst Case

Best-Case and Average-Case Complexity

The best case complexity of an algorithm 1s the function
defined by the minimum number of steps taken on any
instance of size n.

The average-case complexity of the algorithm is the function
defined by an average number of steps taken on any instance
of size n.

Each of these complexities defines a numerical function: time
vS. size!

Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the
basis of best, worst, and average-case complexity?

Generally speaking, we will use the worst-case complexity as
our preferred measure of algorithm efficiency.

Worst-case analysis 1s generally easy to do, and “usually”
reflects the average case. Assume I am asking for worst-
case analysis unless otherwise specified!

Randomized algorithms are of growing importance, and
require an average-case type analysis to show off their merits.

Exact Analysis is Hard!

Best, worst, and average case are difficult to deal with
because the precise function details are very complicated:

fin)

upper bound

It easier to talk about upper and lower bounds of the function.
Asymptotic notation (0,0,()) are as well as we can
practically deal with complexity functions.

Names of Bounding Functions

n O(f(n)) means C' x f(n) is an upper bound on

n

o

n O(f(n)) means C'y X f(n) is an upper bound on

(n)
(n).
* g(n) = Q(f(n)) means C'x f(n)is a lower bound on g(n).
g(n) =
(n) and C; x f(n) is a lower bound on g(n).

g

C, 1, and () are all constants independent of n.

O, (), and ©

c-g(n) ¢;-g(n)
f(n) f(n) f(n)
: { __ i ; c-g(n) c2 - g(n)

)
iy

(a) (b) (c)

The definitions imply a constant ny beyond which they are
satisfied. We do not care about small values of n.

Formal Definitions

e f(n) = O(g(n)) if there are positive constants n, and c
such that to the right of n, the value of f(n) always lies
on or below ¢ - g(n).

e f(n) = Qg(n)) if there are positive constants ny and c
such that to the right of n, the value of f(n) always lies
on or above ¢ - g(n).

* f(n) = O(g(n)) if there exist positive constants ny, ¢, and
¢, such that to the right of n, the value of f(n) always lies
between ¢; - g(n) and ¢5 - g(n) inclusive.

